Правило диффиренцированния

Правило диффиренцированния
Гость
Ответ(ы) на вопрос:
Гость
Если с - постоянное число, и u = u(x), v = v(x) - некоторые дифференцируемые функции, то справедливы следующие правила дифференцирования: 1) (с) ' = 0, (cu) ' = cu'; 2) (u+v)' = u'+v'; 3) (uv)' = u'v+v'u; 4) (u/v)' = (u'v-v'u)/v2; 5) если y = f(u), u = j(x), т.е. y = f(j(x)) - сложная функция, или суперпозиция, составленная из дифференцируемых функций j и f, то , или ; 6) если для функции y = f(x) существует обратная дифференцируемая функция x = g(y), причем   ≠ 0, то .  
Не нашли ответ?
Ответить на вопрос
Похожие вопросы