При каких отрицательных значениях k прямая y=kx-4 имеет с параболой y=x^2+2x ровно одну общую точку?Найдите координаты этой точки
При каких отрицательных значениях k прямая y=kx-4 имеет с параболой y=x^2+2x ровно одну общую точку?Найдите координаты этой точки
Ответ(ы) на вопрос:
Гость
kx-4=x²+2x x²+2x-kx+4=0 x²+x(2-k)+4=0. Квадратное уравнение имеет только одно решение, когда дискриминант равен нулю. Дискриминант: (2-k)²-4*4=0 4-4k+k²-16=0 k²-4k-12=0 Дискриминант: 16+4*12=64. k1=(4+8)/2=6 k2=(4-8)/2=-2 Но подходят только отрицательные k, значит k=-2 х²+2х=-2х-4 х²+4х+4=0 Дискриминант=0 х=-4/2=-2, у=-2х-4=0. координата: (-2;0)
Не нашли ответ?
Похожие вопросы