При каких значениях параметра m квадратный трёхчлен y=(−2m−2)x² +(−2m+1)x−1 отрицателен при всех значениях x? В ответ запишите наибольшее целое решение m .
При каких значениях параметра m квадратный трёхчлен y=(−2m−2)x² +(−2m+1)x−1 отрицателен при всех значениях x? В ответ запишите наибольшее целое решение m .
Ответ(ы) на вопрос:
Гость
Условие такое:
(-2m-2)x^2+(1-2m)x-1<0
Чтобы квадратный трехчлен был отрицательным при всех значениях Х,
необходимо, чтобы старший коэффициент был <0, дискриминант был <0.
Итак, старший коэффициент = (-2m-2);
-2m-2<0
-2m<2
2m>-2
m>-1
Дискриминант:
(1-2m)^2-4(-2m-2)*(-1)= 1-4m+4m^2-8m-8=4m^2-12m-7;
4m^2-12m-7<0
4m^2-12m-7=0
D=(-12)^2-4*4*(-7)=144+112=256
m1=(12-16)/8=-1/2
m2=(12+16)/8=3,5
______+____(-0,5)____-_____(3,5)____+______
m e (-0,5;3,5)
С учетом того, что x>-1 получаем: m e (-0,5;3,5)
Ответ: 3
Не нашли ответ?
Похожие вопросы