При каких значениях параметра m квадратный трёхчлен y=(−2m−2)x² +(−2m+1)x−1 отрицателен при всех значениях x? В ответ запишите наибольшее целое решение m .

При каких значениях параметра m квадратный трёхчлен y=(−2m−2)x² +(−2m+1)x−1 отрицателен при всех значениях x? В ответ запишите наибольшее целое решение m .
Гость
Ответ(ы) на вопрос:
Гость
Условие такое: (-2m-2)x^2+(1-2m)x-1<0 Чтобы квадратный трехчлен был отрицательным при всех значениях Х, необходимо, чтобы старший коэффициент был <0, дискриминант был <0. Итак, старший коэффициент = (-2m-2); -2m-2<0 -2m<2 2m>-2 m>-1 Дискриминант: (1-2m)^2-4(-2m-2)*(-1)= 1-4m+4m^2-8m-8=4m^2-12m-7; 4m^2-12m-7<0 4m^2-12m-7=0 D=(-12)^2-4*4*(-7)=144+112=256 m1=(12-16)/8=-1/2 m2=(12+16)/8=3,5 ______+____(-0,5)____-_____(3,5)____+______ m e (-0,5;3,5) С учетом того, что x>-1 получаем: m e (-0,5;3,5) Ответ: 3
Не нашли ответ?
Ответить на вопрос
Похожие вопросы