Проекции нужны очень срочно

Проекции нужны очень срочно
Гость
Ответ(ы) на вопрос:
Гость
Главная Векторная алгебра (ВА) Задачи на ВА Кинематика Динамика Твердое тело Правила решения задач Подробно обо всем Статьи Об авторе Онлайн-курсы. Подготовка к ЕГЭ по физике Английский по Skype Онлайн-курсы. Подготовка к ЕГЭ, ГИА для школьников 5 - 11 классов Азы математики Бесплатная рассылка Азы математики Получите бесплатный курс по основам математики. Эти знания необходимы для решения задач по физике. Ваше полное имя Ваш основной E-mail Векторная алгебра с нуля! Бесплатная рассылка Векторная алгебра с нуля! Получите бесплатный курс по Векторной алгебре. Он необходим для решения задач по физике. Ваше полное имя Ваш основной E-mail Книги по изучению физики и для подготовки к ЕГЭ Фото книг по физике Проекция вектора. Координатные оси. Проекция точки. Координаты точки на ось Вначале вспомним, что такое координатная ось, проекция точки на ось и координаты точки на оси. Координатная ось – это прямая, которой придается какое–то направление. Можете считать, что это вектор с бесконечно большим модулем. Координатная ось обозначается какой-либо буквой: X , Y , Z , s , t … Обычно на оси выбирается (произвольно) точка, которая называется началом отсчета и, как правило, обозначается буквой О. От этой точки отсчитываются расстояния до других интересующих нас точек. Проекция точки на ось - это основание перпендикуляра, опущенного из этой точки на данную ось (рис. 8). То есть, проекцией точки на ось является точка. Проекция точки на ось. Координата точки. Фото Рис. 8 Координата точки на ось - это число, абсолютная величина которого равна длине отрезка оси (в выбранном масштабе), заключённого между началом оси и проекцией точки на эту ось. Это число берется со знаком плюс, если проекция точки располагается в направлении оси от ее начала и со знаком минус, если в противоположном направлении. Скалярная проекция вектора на ось - это число, абсолютная величина которого равна длине отрезка оси (в выбранном масштабе), заключённого между проекциями точки начала и точки конца вектора. Важно! Обычно вместо выражения скалярная проекция вектора на ось говорят просто – проекция вектора на ось, то есть слово скалярная опускают. Проекция вектора обозначается той же буквой, что и проектируемый вектор (в обычном, нежирном написании), с нижним (как правило) индексом названия оси, на которую этот вектор проектируется. Например, если на ось Х проектируется вектор а, то его проекция обозначается аx. При проектировании этого же вектора на другую ось, скажем, ось Y , его проекция будет обозначаться аy (рис. 9). Координатные оси. Проекции вектора на оси. Фото Рис. 9 Чтобы вычислить проекцию вектора на ось (например, ось X) надо из координаты точки его конца вычесть координату точки начала, то есть аx = хк − xн. Надо помнить: скалярная проекция вектора на ось (или, просто, проекция вектора на ось) - это число (не вектор)! Причем, проекция может быть положительной, если величина хк больше величины хн, отрицательной, если величина хк меньше величины хн и равной нулю, если хк равно хн (рис. 10). Скалярная проекция вектора на ось. Фото Рис. 10 Проекцию вектора на ось можно также найти, зная модуль вектора и угол, который он составляет с этой осью. Из рисунка 11 видно, что аx = а Cos α то есть, проекция вектора на ось равна произведению модуля вектора на косинус угла между направлением оси и направлением вектора. Если угол острый, то Cos α > 0 и аx > 0, а, если тупой, то косинус тупого угла отрицателен, и проекция вектора на ось тоже будет отрицательна. Скалярные проекции вектора на ось. Фото Рис. 11 Углы, отсчитываемые от оси против хода часовой стрелки, принято считать положительными, а по ходу - отрицательными. Однако, поскольку косинус – функция четная, то есть, Cos α = Cos (− α), то при вычислении проекций углы можно отсчитывать как по ходу часовой стрелки, так и против. При решении задач часто будут использоваться следующие свойства проекций: если а = b + c +…+ d , то аx = bx + cx +…+ dx (аналогично на другие оси), если a = mb, то аx = mbx (аналогично на другие оси). Формула аx = а Cos α будет очень часто встречаться при решении задач, поэтому ее обязательно надо знать. Правило определения проекции надо знать наизусть! Запомните!
Не нашли ответ?
Ответить на вопрос
Похожие вопросы