Пружинный маятник вывели из положения равновесия и отпустили. Через какое время (в долях периода) кинетическая энергия колеблющегося тела будет равна потенциальной энергии пружины?

Пружинный маятник вывели из положения равновесия и отпустили. Через какое время (в долях периода) кинетическая энергия колеблющегося тела будет равна потенциальной энергии пружины?
Гость
Ответ(ы) на вопрос:
Гость
x=A*cos(2*pi*t/T) v=x`=A*2*pi/T*sin(2*pi*t/T) Ek = mv^2/2=m*(2*pi*A)^2/(2*T^2)*sin^2(2*pi*t/T) max_Ek = m*(2*pi*A)^2/(2*T^2) =Ek + Ep при Ek = Ep => => max_Ek = 2*Ek => Ek = max_Ek/2 => m*(2*pi*A)^2/(2*T^2)*sin^2(2*pi*t/T) = m*(2*pi*A)^2/(2*T^2) * 1/2 => sin^2(2*pi*t/T) = 1/2 => (2*pi*t/T) = pi/4+pi/2*k => (t/T) = 1/8+k/4 ответ 1/8+k/4   ( в долях периода ) или t = T * (1/8+k/4)
Гость
Пружинный маятник вывели из положения равновесия и отпустили. Через какое время (в долях периода) кинетическая энергия колеблющегося тела будет равна потенциальной энергии пружины? Дано Х1=A    Eк=Eп  t- ? X= A*cos w*t=A*cos ф к*A^2/2=Eк +Eп k*A^2/2=2*k*X^2/2 X=A/√2 A/√2=A*cos ф ф=π/4=w*t=2*π*t/T t=T/8 Oответ t=T/8 понятно что это минимальный промежуток времени ( так как колебания прцесс периодический ,  то таких моментов будет много,  но минимальное время T/8)
Не нашли ответ?
Ответить на вопрос
Похожие вопросы