Решение задачи в параллелограмме ABCD точка e середина стороны bc. Отрезок AE пересекает диагональ bdc точке k a) докажите подобие треугольников akdиekb б)найдите длину отрезка ae если ak=7см

Решение задачи в параллелограмме ABCD точка e середина стороны bc. Отрезок AE пересекает диагональ bdc точке k a) докажите подобие треугольников akdиekb б)найдите длину отрезка ae если ak=7см
Гость
Ответ(ы) на вопрос:
Гость
а) Треугольники ВКЕ и ДКА подобны, т.к. уг. ВКЕ = углу АКД (вертикальные) Угол КВЕ = углу КДА (накрест лежащие) Угол ВЕК = углу КАД (накрест лежащие) б) ВС = АД (противолежащие стороны параллелограмма) ВЕ = 0,5ВС (по условию) и ВЕ = 0,5АД Итак коэффициент подобия треугольников ВКЕ и ДКА  к = 1/2 И КЕ: АК = 1: 2, откуда КЕ = 7:2 = 3,5 АЕ = АК + КЕ = 7 + 3,5 = 10,5см
Не нашли ответ?
Ответить на вопрос
Похожие вопросы