Решить неравенство: log2(x^2 - 3x + 2) ≤ 1 + log2(x-2)

Решить неравенство: log2(x^2 - 3x + 2) ≤ 1 + log2(x-2)
Гость
Ответ(ы) на вопрос:
Гость
ОДЗ x > 2  log2(x^2 - 3x + 2) ≤ log2(2) + log2(x - 2) log2(x^2 - 3x + 2) ≤ log2 (2x - 4) x^2 - 3x + 2 ≤ 2x - 4 x^2 - 5x + 6 ≤ 0  x^2 - 5x + 6 = 0  D = 25 - 24 = 1 x1 = (5 + 1)/2 = 3 x2 = (5 - 1)/2 = 2 (x - 3)(x - 2) ≤ 0  x ∈ [ 2; 3] + ОДЗ x ∈ (2; 3]
Не нашли ответ?
Ответить на вопрос
Похожие вопросы