Решите хотя бы что-нибудь...пожалуйстаа(((1) Концы отрезка АВ, не пересекающего плоскость, удалены от неё на расстояния 2,4м и 7,6м. Найти расстояние от середины М отрезка АВ до этой плоскости.2) Перекладина длиной 5м своими ко...

Решите хотя бы что-нибудь...пожалуйстаа((( 1) Концы отрезка АВ, не пересекающего плоскость, удалены от неё на расстояния 2,4м и 7,6м. Найти расстояние от середины М отрезка АВ до этой плоскости. 2) Перекладина длиной 5м своими концами лежит на двух вертикальных столбах высотой 3м и 6м. Каково расстояние между основаниями столбов? 3) Из точки к плоскости проведены две наклонные, равные 17см и 15см. Проекция одной из них на 4см больше проекции другой. найти проекции наклонных .4) Из вершины равностороннего треугольника АВС восставлен перпендикуляр AD к плоскости треугольника. Чему ровно расстояние от точки D прямой ВС, если AD=1дм, ВС=8дм.
Гость
Ответ(ы) на вопрос:
Гость
.1.Пусть О - середина отрезка АВ. Опустим перпендикуляры к плоскости из точек А, В и О, соответствующие точки на плоскости обозначим A', B' и O', отрезки АА', ВВ' и ОО' - параллельны.Так как проекция сохраняет отношение длин коллинеарных отрезков, то A'O'/O'B'=АО/ОВ=1, т.е.O' - середина A'B'. Получается, что А'АВВ' - трапеция, где А'А и В'В - основания, а О'О - её средняя линия. Длина средней линии трапеции равна полусумме длин её оснований.(2,4+7,6):2=5 (см)Ответ: расстояние от середины отрезка АВ до плоскости 5 сантиметров. 2.Это надо провести на уровне 3 м от земли горизонтальную прямую до второго столба, и получится прямоугольный треугольник с гипотенузой 5 и катетом 6 - 3 = 3.Второй катет и есть расстояние между столбами. Он равен 4.  Опять получился египетский треугольник со сторонами 3,4,5... 3.Прямая АВ, точка С. Рисуем треугольник АВС  АВ = 17 см  CB = 15 см  Опускаем высоту СК на сторону АВ. Обозначим  АК = х  КВ = х-4  По теореме Пифагора  CK^2 = AC^2 - AK^2 = CB^2 - KB^2  17^2 - x^2 = 15^2 - (x-4)^2  289 - x^2 = 225 - x^2 + 8x - 16  8x = 80  x = 10  х-4 = 6 4. По заданию треугольник равносторонний т. е AB=AC=BC=8 дм.  Угол от прямой AD к пл-ти треугольника: /_DAC = /_DAB = /_DAM = 90* - (ПО ЗАДАНИЮ ПЕРПЕНДИКУЛЯР)  Далее по теореме Пифагора ( /_ AMC = 90*); MC= BC/2; AM = sqrt( AC2 - MC2)= sqrt (8 - 4) = 6.928 дм.  - точка M лежит на прямой BC. Вобщем AM - медиана и высота выпущенная из точки А и делящая сторону BC пополам.  Расстояние от D до BC: DM= sqrt (AD2 + AM2)= sqrt (1 + 6.928)= 7 дм.,,, sqrt- это квадратный корень; 2- это квадрат. ; /_ - это угол.  (К примеру до точки С: )  DC = sqrt (AD2 + AC2) = sqrt (1 + 8) = 8,06225 дм.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы