Ответ(ы) на вопрос:
√(5x² + 4) ≤ 7x + 10 (√(5x² + 4))² ≤ (7x + 10)² 5x² + 4 ≤ 49x² + 140x + 100 5x² - 49x² - 140x + 4 - 100 ≤ 0 -44x² - 140x - 96 ≤ 0 -44x² - 140x - 96 = 0 | : (-4) 11x² + 35x + 24 = 0 D = b² - 4ac = 35² - 4 × 11 × 24 = 1225 - 1056 = 169 x₁,₂ = (-b ± √D) ÷ 2a x₁ = (-35 + 13) ÷ 2 × 11 = -48 ÷ 22 = -24/11 = -2, 2/11 (минус 2 целых 2 одинадцатых) x₂ = (-35 - 13) ÷ 2 × 11 = -22 ÷ 22 = -1 [latex]--(minus)--(-2\frac{2}{11})--(plus)--(-1)--(minus)-->x [/latex] x ≤ -2, 2/11 x ≥ -1 Ответ: x ∈ (-∞; -2, 2/11] U [-1; +∞)
Не нашли ответ?
Похожие вопросы