Решите сами. Да-да. Стороны треугольника равны 3 см, 2 см и корень из 3 см. Определите вид этого треугольника.
Решите сами. Да-да. Стороны треугольника равны 3 см, 2 см и корень из 3 см. Определите вид этого треугольника.
Ответ(ы) на вопрос:
Среди сторон треугольника нет равных, значит, треугольник разносторонний, кроме того, по теореме косинусов (3см)^2 = (2см)^2+(√3см)^2-2*2см*√3см*cos альфа; 9см^2 = 4см^2+3см^2-2*2*√3см^2*cos альфа; 9см^2 = 7см^2-4√3см^2*cos альфа; -4√3см^2*cos альфа = 2см^2; cos альфа = -1/2√3; cos альфа <0; значит, угол альфа - тупой, значит, треугольник тупоугольный.
По теореме о косинусах: [latex]a^2=b^2+c^2-2bccos\alpha[/latex] Известно, что против большей стороны лежит больший катет. Большая сторона равна трем. Подставим значения сторон и найдем косинус: [latex]3^2=2^2+3-2*2*\sqrt{3}*cos\alpha[/latex] [latex]9=7-4\sqrt{3}cos\alpha[/latex] [latex]cos\alpha=-\frac{1}{2\sqrt{3}}[/latex] Так как косинус отрицательный, то угол больше 90, а, значит, треуольник тупоугольный.
Не нашли ответ?
Похожие вопросы