Решите уравнение: [latex]125* 2^{4x}-9*20^{x+1} +64* 25^{x} =0 [/latex]

Решите уравнение: [latex]125* 2^{4x}-9*20^{x+1} +64* 25^{x} =0 [/latex]
Гость
Ответ(ы) на вопрос:
Гость
[latex]125* 2^{4x} -9* 20^{x+1} +64* 5^{2x} =0[/latex] [latex]125* 4^{2x} -9*20* 20^{x} +64* 5^{2x} =0[/latex] [latex]125* 4^{2x} -180* 20^{x} +64* 5^{2x} =0[/latex]  l :[latex] 5^{2x} [/latex] [latex]125* (\frac{4}{5}) ^{2x} -180* ( \frac{4}{5} )^{x} +64 =0[/latex] Замена:  [latex] ( \frac{4}{5} )^{x}=t,[/latex]  [latex]t\ \textgreater \ 0[/latex] [latex]125t^2-180t+64=0[/latex] [latex]D_1=(\frac{b}{2} )^2-ac=90^2-125*64=8100-8000=100[/latex] [latex]t_1= \frac{90+10}{125}= \frac{4}{5} [/latex] [latex]t_2= \frac{90-10}{125}= \frac{16}{25} [/latex] [latex] ( \frac{4}{5}) ^{x} =\frac{4}{5} [/latex]    или   [latex] ( \frac{4}{5}) ^{x} =\frac{16}{25} [/latex] [latex]x=1[/latex]   или  [latex] ( \frac{4}{5}) ^{x} =(\frac{4}{5})^2[/latex]                                 [latex]x=2[/latex] Ответ: [latex]1;[/latex] [latex]2[/latex]
Не нашли ответ?
Ответить на вопрос
Похожие вопросы