Решите уравнение [latex]4sin^{2}x+8cosx+1=0[/latex] В ответе укажите наибоьлший отрицательный его корень.

Решите уравнение [latex]4sin^{2}x+8cosx+1=0[/latex] В ответе укажите наибоьлший отрицательный его корень.
Гость
Ответ(ы) на вопрос:
Гость
[latex]4(1 - Cos^2x) + 8Cosx +1 = 0 [/latex] [latex]-4Cos^2x + 8Cosx + 5 = 0 [/latex] Решаем квадратное уравнение относительно Cosx Cos x1 = (-8 + 12)/(-8) = -1/2 Cos x2 = (-8 - 12)/(-8) =5/2 > 1 (-1<= Cosx <= 1) x = arccos(-1/2) + πk, k∈Z x = ±2π/3 + 2πk Наибольший отрицательный корень x = -2π/3
Гость
4sin^2(x)+8cos(x)+1=0 4*(1-cos^2(x))+8cos(x)+1=0 4cos^2(x)-8cos(x)-5=0 Cos(x)=t 4t^2-8t-5=0 D=b^2-4ac=64+80=144 t1,2=(-b±√D)/8 t1,2=(8±12)/8 t1=20/8=5/2 t2=-4/8=-1/2   cos(x)=5/2>1 – нет решений cos(x)=-1/2 x=+-arccos(-1/2)+2*pi*n x=+-2pi/3 +2*pi*n Наибольший отрицательный корень: x=-2pi/3 
Не нашли ответ?
Ответить на вопрос
Похожие вопросы