Середина M стороны AD выпуклого четырехугольника ABCD равноудалена от всех его вершин. Найдите AD , если BC=4, а углы B и C четырехугольника равны соответственно 128 и 112

Середина M стороны AD выпуклого четырехугольника ABCD равноудалена от всех его вершин. Найдите AD , если BC=4, а углы B и C четырехугольника равны соответственно 128 и 112
Гость
Ответ(ы) на вопрос:
Гость
Т.к. M равноудалена от A,B,C,D, то A,B,C,D лежат на окружности с центром в т. M. Угол BCD - вписанный, опирается на дугу BAD, т.е.  градусная мера дуги BAD=2*112=224 Угол CBA - вписанный, опирается на дугу CDA, т.е.  градусная мера дуги CDA=2*128=256 AD - диаметр, поэтому дуга AD равна 180 градусам Тогда дугаBA=дугаBAD-дугаAD=224-180=44 градуса дугаCD=дугаCDA-дугаDA=256-180=76 градусов ДугаBC=дугаAD-дугаAB-дугаCD=180-76-44=60 Т.е. уголBMС=60 градусов - центральный, опирающийся на хорду длиной 4, поэтому радиус (r=AM=MD) равен 4 Диаметр=AD=4*2=8
Не нашли ответ?
Ответить на вопрос
Похожие вопросы