Сколько членов содержится в возрастающей арифметической прогрессии с положительными членами, у которой сумма членов с четными номерами относится к сумме членов с не четными номерами как 12:13?

Сколько членов содержится в возрастающей арифметической прогрессии с положительными членами, у которой сумма членов с четными номерами относится к сумме членов с не четными номерами как 12:13?
Гость
Ответ(ы) на вопрос:
Гость
Т.к. сумма членов с четными номерами меньше суммы членов с нечетными, то прогрессия содержит нечетное количество членов. Обозначим это количество n = 2m+1. Первый член прогрессии обозначим а1, последний аN. Из нечетных членов прогрессии можно составить новую прогрессию, у которой первый член будет тоже а1, а последний аN, количество членов в этой прогрессии = (m+1). Сумма членов такой прогресс S₁=(a1+aN)*(m+1)/2 Из четных членов прогрессии получится прогрессия, у которой первый член будет (а1+d), а последний (aN-d), в этой прогрессии будет m членов, а их сумма S₂=(a1+d+aN-d)*m/2. = (a1+aN)*m/2 Т.к. S₂ : S₁ = 12 : 13, получили уравнение: [latex] \frac{(a_1+a_n)m}{2} : \frac{(a_1+a_n)(m+1)}{2} = \frac{12}{13} \\\frac{m}{m+1} = \frac{12}{13}\\13m=12m+12\\m=12\\n=2m+1=2*12+1=25[/latex] Ответ: 25 членов
Не нашли ответ?
Ответить на вопрос
Похожие вопросы