Составьте задачи по истории Западной России , с дробями ( с вычитанием,умножением и сложением,на ваш выбор) (если что я в 6 классе!) Заранее спасибо.
Составьте задачи по истории Западной России , с дробями ( с вычитанием,умножением и сложением,на ваш выбор) (если что я в 6 классе!) Заранее спасибо.
Ответ(ы) на вопрос:
Гость
Дроби в Древней ГрецииПоскольку греки работали с обыкновенными дробями лишь эпизодически, они использовали различные обозначения. Герон и Диофант, самые известные арифметики среди древнегреческих математиков, записывали дроби в алфавитной форме, причем числитель располагали под знаменателем. Но в принципе предпочтение отдавалось либо дробям с единичным числителем, либо шестидесятиричным дробям.Недостатки греческих обозначений дробных чисел, включая использование шестидесятиричных дробей в десятичной системе счисления, объяснялись отнюдь не пороками основополагающих принципов. Недостатки греческой системы счисления можно отнести скорее за счет их упорного стремления к строгости, которое заметно увеличило трудности, связанные с анализом отношения несоизмеримых величин. Слово «число» греки понимали как набор единиц, поэтому то, что мы теперь рассматриваем как единое рациональное число – дробь, – греки понимали как отношение двух целых чисел. Именно этим объясняется, почему обыкновенные дроби редко встречались в греческой арифметике. Максим Плануд греческий монах, ученый, математик в 13 веке ввел название числителя и знаменателяВ Греции употреблялись наряду с единичными, «египетскими» дробями и общие обыкновенные дроби. Среди разных записей употреблялась и такая: сверху знаменатель, под ним – числитель дроби. Например, означало три пятых. Еще за 2-3 столетия до Евклида и Архимеда греки свободно владели арифметическими действиями с дробями.Изображение дробей в Древней Греции представлено в приложении №2.Дроби в Индии.Современную систему записи дробей создали в Индии. Только там писали знаменатель сверху, а числитель снизу, и не писали дробной черты. Зато вся дробь помещалась в прямоугольную рамку. Иногда использовалось и «трехэтажное» выражение с тремя числами в одной рамке; в зависимости от контекста это могло обозначать неправильную дробь (a + b/c) или деление целого числа a на дробь b/c. Правила действий над дробями почти не отличались от современных. У индийского математика Брахмагупты мы находим достаточно развитую систему дробей. У него встречаются разные дроби: и основные, и производные с любым числителем.Дроби у арабов.Записывать дроби как сейчас стали арабы. Средневековые арабы пользовались тремя системами записи дробей. Во-первых, на индийский манер записывая знаменатель под числителем; дробная черта появилась в конце XII – начале XIII в. Во-вторых, чиновники, землемеры, торговцы пользовались исчислением аликвотных дробей, похожим на египетское, при этом применялись дроби со знаменателями, не превышающими 10 (только для таких дробей арабский язык имеет специальные термины); часто использовались приближенные значения; арабские ученые работали над усовершенствованием этого исчисления. В-третьих, арабские ученые унаследовали вавилонско-греческую шестидесятеричную систему, в которой, как и греки, применяли алфавитную запись, распространив ее и на целые части.Изображение дробей у арабов представлено в приложении №3.Дроби в ВавилонеВавилоняне пользовались всего двумя цифрами. Вертикальная черточка обозначала одну единицу, а угол из двух лежащих черточек – десять. Эти черточки у них получались в виде клиньев, потому что вавилоняне писали острой палочкой на сырых глиняных дощечках, которые потом сушили и обжигали.В древнем Вавилоне предпочитали постоянный знаменатель, равный 60-ти. Шестидесятеричными дробями, унаследованными от Вавилона, пользовались греческие и арабские математики и астрономы. Исследователи по-разному объясняют появление у вавилонян шестидесятеричной системы счисления. Скорее всего здесь учитывалось основание 60, которое кратно 2, 3, 4, 5, 6, 10, 12, 15, 20, 30 и 60, что значительно облегчает всякие расчеты.Вавилонская математика оказала влияние на греческую математику. Следы вавилонской шестидесятеричной системы счисления удержались в современной науке при измерении времени и углов. До наших дней сохранилось деление часа на 60 мин., минуты на 60 с, окружности на 360 градусов, градуса на 60 мин., минуты на 60с.Вавилоняне внесли ценный вклад в развитие астрономии. Шестидесятеричными дробями пользовались в астрономии ученые всех народов до XVII века, называя их астрономическими дробями. В отличие от них, дроби общего вида, которыми пользуемся мы, были названы обыкновенными.Получить полный текстИзображение дробей в Древнем Вавилоне – ПриложениеДроби в Древнем КитаеВ Древнем Китае уже пользовались десятичной системой мер, обозначали дробь словами, используя меры длины чи: цуни, доли, порядковые, шерстинки, тончайшие, паутинки. Дробь вида 2,135436 выглядела так: 2 чи, 1 цунь, 3 доли, 5 порядковых, 4 шерстинки, 3 тончайших, 6 паутинок. Так записывались дроби на протяжении двух веков, а в V веке китайский ученый Цзу-Чун-Чжи принял за единицу не чи, а чжан = 10 чи, тогда эта дробь выглядела так: 2 чжана, 1 чи, 3 цуня, 5 долей, 4 порядковых, 3 шерстинки, 6 тончайших, 0 паутинок.В китайской «Математике в девяти разделах» уже имеют место сокращения дробей и все действия с дробями.
Не нашли ответ?
Похожие вопросы