Спростити вигляд множини, яка задана за допомогою операцій, застосовуючи закони алгебри множин (у відповідь множини можуть входити не більше одного разу) (A\B)∪(A∩B∩C)

Спростити вигляд множини, яка задана за допомогою операцій, застосовуючи закони алгебри множин (у відповідь множини можуть входити не більше одного разу) (A\B)∪(A∩B∩C)
Гость
Ответ(ы) на вопрос:
Гость
Всегда верно, что X\Y = X∩{–Y}, где {–Y} – обратное к Y множество. Всегда верно, что [ X∩Y ] ∪ [ X∩Z ] = X∩(Y∪Z) ; Всегда верно, что Y∪Z = –( [–Y] ∩ [–Z] ) ; Всегда верно, что X∩(–X) = { 0 }, где { 0 } – ноль-множество. Тогда: (A\B)∪(A∩B∩C) = ( A ∩ [–B] ) ∪ ( A ∩ [B∩C] ) = A ∩ ( [–B] ∪ [B∩C] ) = = A \ { – ( [–B] ∪ [B∩C] ) } = A\( B ∩ [ – {B∩C} ] ) = A\( B \ [ B∩C ] ) = A\(B\C) ; Что и требовалось. О т в е т :  (A\B)∪(A∩B∩C) = A\(B\C) .
Не нашли ответ?
Ответить на вопрос
Похожие вопросы