Среднее арифметическое трех НАТУРАЛЬНЫХ чисел в 35/11 раза больше, чем среднее арифметическое обратных чисел. Найти эти числа.
Среднее арифметическое трех НАТУРАЛЬНЫХ чисел в 35/11 раза больше, чем среднее арифметическое обратных чисел. Найти эти числа.
Ответ(ы) на вопрос:
Если а, в и с - искомые числа. то (а + в + с)/3 = 35/11*(1/а + 1/в + 1/с)/3 - условие. 11авс(а + в + с) - 35(вс + ас + ав) = (11a^2 - 35)вс + (11в^2 - 35)ас + (11с^2 - 35)ав = 0. Сумма трех чисел равна нулю только в трех случаях: 1. Если все слагаемые равны нулю 2. Одно слагаемое отрицательно, а другое обращается в ноль. На множестве натуральных чисел рассматривать такие случаи бессмысленно, так как уравнение 11х^2 - 35 = 0 на этом множестве решений не имеет. 3. Два слагаемых отрицательны. Пусть а = в = 1. Тогда равенство примет вид - 24с - 24с + 11с^2 - 35 = 0, данное уравнение имеет одно натуральное решение с = 5. Искомая тройка чисел (1; 1; 5) Ответ: (1; 1; 5)
Не нашли ответ?
Похожие вопросы