СРОЧНО!в прямоугольнике ABCD на сторонах AB и BC, длины которых равны соответственно 6 и 8, лежат точки M и N; отрезок MN параллелен AC. Периметры AMNCD и MBN относятся как 7:3. Найти MN
СРОЧНО!в прямоугольнике ABCD на сторонах AB и BC, длины которых равны соответственно 6 и 8, лежат точки M и N; отрезок MN параллелен AC. Периметры AMNCD и MBN относятся как 7:3. Найти MN
Ответ(ы) на вопрос:
Гость
Обозначим отрезок BN за х.
Треугольники MBN и ACD подобны.
Тогда ВМ = (6/8)х = (3/4)х = 0,75х.
[latex]MN= \sqrt{MB^2+BN^2} = \sqrt{( \frac{3}{4}x)^2+x^2 } = \sqrt{ \frac{9x^2+16x^2}{16} } = \frac{5x}{4} =1,25x.[/latex]
Определим периметры AMNCD (P₁) и MBN (P₂₁):
P₂ = x + 0,75x + 1,25x = 3x.
P₁ = 1,25x + (8 - x) + 6 + 8 + (6 - 0,75x) = 28 - 0,5x.
По условию задачи:
[latex] \frac{28-0,5x}{3x} = \frac{7}{3} [/latex]
84 - 1,5x = 21x
22,5x = 84
x = 84 / 22,5 = 3.733333 = =56 / 15 = 3(11/15).
Подставим полученное значение в формулу MN:
[latex]MN= \frac{56}{15} * \frac{5}{4} = \frac{14}{3} =4,66667.[/latex]
Не нашли ответ?
Похожие вопросы