Стороны АС, АВ и ВС треуголника АВС равны 2√5,√13 и 2 соответственно. Точка К расположена вне треугольника АВС, причем отрезок КС пересекает сторону АВ в точке, отличной от В. Известно, что треугольник с вершинами К, А и С подо...
Стороны АС, АВ и ВС треуголника АВС равны 2√5,√13 и 2 соответственно. Точка К расположена вне треугольника АВС, причем отрезок КС пересекает сторону АВ в точке, отличной от В. Известно, что треугольник с вершинами К, А и С подобен исходному. Найдите косинус угла ∠АКС, если ∠КАС>90° . (Желательно с чертежом)
Ответ(ы) на вопрос:
Треугольники АВС и АКС подобны, значит соответственные углы у них равны.
В ΔАВС найдём косинусы каждого из трёх его углов по теореме косинусов
a² = b² + c² - 2*b*c* cos 0 значит, < А - острый
2) cos B=( AB² + BC² - AC²) / (2*AB*BC) =( (√13² + 2² - (2√5)² ) / (2* 2√5 * 2) =
= (13 + 4 - 20) / (4√5) = - 3/(4√5) < 0 При отрицательном значении косинуса < B - тупой
3) cos C= (AC² + BC² - AB²) / (2*AC*BC) =( (2√5)² + 2² - √13²) / (2*2√5 * 2) =
= (20 + 4 - 13)/ (8√5) = 11/ (8√5) > 0 < C - острый
Отрицательное значение у угла В, < В тупой => < B = < АКС,
тогда cos < AKC = 3 /(4√5) = [latex] \frac{3 \sqrt{5} }{20} [/latex]
Ответ 3 /(4√5) или [latex] \frac{3 \sqrt{5} }{20} [/latex]
Не нашли ответ?
Похожие вопросы