Стороны основания правильной шестиугольной пирамиды равны 14,боковые ребра равны 25.Найдите площадь боковой поверхности этой пирамиды.
Стороны основания правильной шестиугольной пирамиды равны 14,боковые ребра равны 25.Найдите площадь боковой поверхности этой пирамиды.
Ответ(ы) на вопрос:
правильная шестиугольная пирамида
сторона основания с=144
боковое ребро в=25
Sбок ----- ?
Решение.
Для правильной пирамиды площадь боковой поверхности
Sбок = (1/2)Р*а, где Р - периметр основания, а - апофема.
Т.к. в основании шестиугольник, то его периметр
Р = 6 * с = 6 * 14 = 84
Апофему (высоту боковой грани) найдем по теореме Пифагора.
Т. к. боковая грань правильной пирамиды представляет собой равнобедренный треугольник, то
а = √[(в² - (с/2)²] = √[(25² - (14/2)²] = √(625 - 49) = √576 = 24
Sбок = (Р * а)/2 = (84 * 24)/2 = 1008
Ответ: Sбок. = 1008
Не нашли ответ?
Похожие вопросы