Стороны трикутника равны 3 см и 5 см, а кут между ними 120 градусов. Найдите площу подобного ему трикутника, периметр какова равно 30 см, 

Стороны трикутника равны 3 см и 5 см, а кут между ними 120 градусов. Найдите площу подобного ему трикутника, периметр какова равно 30 см, 
Гость
Ответ(ы) на вопрос:
Гость
По  теореме косинусов ищем 3  сторону 9+25- 2*3*5*-1/2=с^2 c^2=49 c=7 Пусть x коэффициент  подобия откуда: 3x+5x+7x=30 15x=30 x=2 Стороны  6,10,14 Угол между  сторонами  тот  же откуда площадь S=1/2*6*10*sin120=15√3
Гость
Площадь первого треугольника S1=1/2*3*5*sin 120=15/2*√3/2=15√3/4.  Третья сторона треугольника по теореме косинусов равна с²=3²+5²-2*3*5*cos120=34-30*(-1/2)=49, с=7 см. Тогда периметр Р1=3+5+7=15 см.  Отношение периметров подобных треугольников равно коэффициенту подобия: Р1/Р2=15/30=1/2. Отношение площадей подобных треугольников равно квадрату коэффициента подобия: S1/S2=1/4, S2=4S1=4*15√3/4=15√3
Не нашли ответ?
Ответить на вопрос
Похожие вопросы