СУММА ДВУХ ДВУЗНАЧНЫХ ЧИСЕЛ РАВНА 137 .ЦИФРЫ ОБОИХ ЧИСЕЛ ПЕРЕСТАВИЛИ И ПОЛУЧЕННЫЕ ЧИСЛА СЛОЖИЛИ.КАКАЯ СУММА МОГЛА ПОЛУЧИТЬСЯ?ПРИВЕДИТЕ ВСЕ ВОЗМОЖНЫЕ ОТВЕТЫ.

СУММА ДВУХ ДВУЗНАЧНЫХ ЧИСЕЛ РАВНА 137 .ЦИФРЫ ОБОИХ ЧИСЕЛ ПЕРЕСТАВИЛИ И ПОЛУЧЕННЫЕ ЧИСЛА СЛОЖИЛИ.КАКАЯ СУММА МОГЛА ПОЛУЧИТЬСЯ?ПРИВЕДИТЕ ВСЕ ВОЗМОЖНЫЕ ОТВЕТЫ.
Гость
Ответ(ы) на вопрос:
Гость
по условию нам даны два числа ху и вс, над каждым из которых должны быть черты, как над векторами, чтобы показать, что это не 4 числа, а 2. Затем расписываем это по формуле 5 класса: 10х+у+10в+с=137 10(х+в)=137-(у+с) следовательно, 137-(у+с) кратно 10 и (у+с)=7 или 17. тогда х+в=12 или 13. перебираем возможные суммы первого варианта (у+с=7 и х+в=13) и получаются такие числа: 41+96, 52+85, 63+74, 46+91, 55+82, 64+73. если менять цифры местами, в любом случае сумма = 83 во втором варианте (у+с=17 и х+в=12) получается: 39+98, 48+89, 38+99, 49+88. сумма измененных чисел = 182. ответ: 83 и 182
Не нашли ответ?
Ответить на вопрос
Похожие вопросы