Сумма квадратов 2-х натуральных чисел, одно из которых больше другого на 4, равна 400.

Сумма квадратов 2-х натуральных чисел, одно из которых больше другого на 4, равна 400.вычислите сумму этих чисел освободите от иррациональности знаменатель дроби 3/2 корень из 3-3
Гость
Ответ(ы) на вопрос:
Гость
РЕШЕНИЕ Пишем уравнение X² + (X+4)² = 400 Решаем - раскрываем скобки X² +  X² + 2*4*X + 4² = 400 Упрощаем 2*X² + 8 X - 384 = 0 Решаем квадратное уравнение Дискриминант = 3136  и  √3136 = 56 и корни    Х1 = 12  и Х2 = -16 В расчет применим числа 12 и 16 и вычисляем сумму чисел 12 +16 = 28 - ОТВЕТ
Не нашли ответ?
Ответить на вопрос
Похожие вопросы