Сумма положительных чисел a+b+c=1580.Вычеслите значение суммы 1/(a+c)+1/(a+b)+1/(c+b), если c/(a+b)+b/(a+c)+a/(b+c)=76

Сумма положительных чисел a+b+c=1580.Вычеслите значение суммы 1/(a+c)+1/(a+b)+1/(c+b), если c/(a+b)+b/(a+c)+a/(b+c)=76
Гость
Ответ(ы) на вопрос:
Гость
[latex]a+b+c=1580\\ \frac{c}{a+b}+\frac{b}{a+c}+\frac{a}{b+c}=76[/latex] теперь поделим второе равенство на первое и заметим что  [latex]\frac{\frac{c}{a+b}+\frac{b}{a+c}+\frac{a}{b+c}}{a+b+c}=\frac{76}{1580}\\ \frac{\frac{c}{a+b}+\frac{b}{a+c}+\frac{a}{b+c}}{a+b+c}=\\ \frac{a}{(b+c)(a+b+c)}+\frac{c}{(a+b)(a+b+c)}+\frac{b}{(a+c)(a+b+c)}=\\-\frac{3}{a+b+c}+\frac{1}{a+c}+\frac{1}{a+b}+\frac{1}{b+c}=\frac{76}{1580}\\ \frac{1}{a+c}+\frac{1}{a+b}+\frac{1}{b+c}=\frac{76}{1580} + \frac{3}{1580}\\ \frac{1}{a+c}+\frac{1}{a+b}+\frac{1}{b+c}=\frac{1}{20} [/latex]
Не нашли ответ?
Ответить на вопрос
Похожие вопросы