Точка касания окружности, вписанной в прямоугольную трапецию, делит большую боковую сторону на отрезки длинной 3 см и 12 см. Найдите площадь трапеции.

Точка касания окружности, вписанной в прямоугольную трапецию, делит большую боковую сторону на отрезки длинной 3 см и 12 см. Найдите площадь трапеции.
Гость
Ответ(ы) на вопрос:
Гость
В силу того, что трапеция описана вокруг окружности, суммы длин ее противоположных сторон равны. Следовательно, если боковая сторона равна 3 + 12 = 15 см, и меньший отрезок равен 3, то вторая боковая сторона равна 3*2 = 6 см, тогда большее основание равно 15 см, а меньшее основание, равное высоте (так как трапеция прямоугольная), равно 6.  Площадь трапеции, равная произведению половины высоты (6:2 = 3) на сумму оснований (6 + 15 = 21), равна 3*21 = 63 кв см. Ответ: 63 кв. см.
Гость
Найдем радиус вписанной окружности по формуле r=√mn, где m и n - длины отрезков, на которые точка касания делит большую сторону. r=√3*12=√36=6 см. Высота трапеции равна 2 радиусам вписанной окружности, поэтому h=6*2=12 см. Меньшая боковая сторона = h = 12 см. Сумма боковых сторон = 12+3+12=27 см. Из свойств описанной трапеции следует, что сумма длин боковых сторон равна сумме длин оснований. Сумма оснований=27 см. Находим площадь трапеции, которая равна полусумме оснований, умноженной на высоту. S=27:2*12=162 см². Ответ: 162 см².
Не нашли ответ?
Ответить на вопрос
Похожие вопросы