Точка М лежит внутри равностороннего реугольника АВС. Вычислить площадь этого треугольника, если известно, что АМ=ВМ=2см, СМ=1см.
Точка М лежит внутри равностороннего реугольника АВС. Вычислить площадь этого треугольника, если известно, что АМ=ВМ=2см, СМ=1см.
Ответ(ы) на вопрос:
Гость
Нарисуем равносторонний треугольник АВС.
Так как точка М по условию находится на равном расстоянии от А и В, она должна лежать на биссектрисе угла С
( которая для этого треугольника и медиана, и высота, хотя для решения данной задачи важна лишь биссектриса).
Соединим точку М с вершинами А и В.
Опустим из М перпендикуляр МН на АС.
МН в прямоугольном треугольнике противолежит углу 30° и потому равна половине гипотенузы СМ.
МН=1/2
АС - сторона равностороннего треугольника - равна АН+НС
АН найдем по т. Пифагора из треугольника АМН
АН=√(4 -1/4)=(√15):2
СН=СМ*cos(30°)=(√3):2
Сложим АН и СН и получим
АС=√3(√5+1):2
Площадь равностороннего треугольника равна квадрату его стороны, умноженному на корень из трех и деленному на 4.
S={√3(√5+1):2}²(√3):4
S={3(6+2√5)(√3):16=(18√3+6√15):16=
=(9√3+3√15):8
Ответ:(9√3+3√15):8 ( трудно назвать ответ изящным, но он верный).
Если извлечь корни, то
S≈3,4 см².
Рисунок к задаче очень простой, его несложно сделать самостоятельно.( какой-то сбой - не загружается)
Не нашли ответ?
Похожие вопросы