Точка находится на расстоянии 10 см от всех вершин равностороннего треугольника со стороной 6√3 см. Найти расстояние от этой точки до плоскости треугольника.

Точка находится на расстоянии 10 см от всех вершин равностороннего треугольника со стороной 6√3 см. Найти расстояние от этой точки до плоскости треугольника.
Гость
Ответ(ы) на вопрос:
Гость
Если точка удалена на одно и то же расстояние от всех вершин, то она принадлежит прямой, перпендикулярной плоскости треугольника и проходящей через точку пересечения его серединных перпендикуляров (в нашем случае серед. перпендикуляры совпадают с высотами). Пусть (.) K - точка, о которой идет речь в условии, (.) N - точка пересечения высот треугольника (ортоцентр). Рассмотрим прямоугольный тр. ΔKNB, в котором угол при вершине N прямой. NB - 2/3 h - высоты тр. ΔABC. KB - данное нам расстояние - 10 см. Найдем высоту: h = a√3 / 2 = 6/2 * √3² = 3*3 = 9 Тогда 2/3 h = 6. А значит, расстояние от точки до плоскости тр.: KN² = 10² - 6² = 64 = 8² KN = 8. Ответ: расстояние от точки до плоскости треугольника равно 8 см
Не нашли ответ?
Ответить на вопрос
Похожие вопросы