Треугольник abc равнобедренный с основанием bc. Биссектрисы внешних углов при вершинах b и c треугольника abc пересекаются в точке o. Докажите что oc=ob
Треугольник abc равнобедренный с основанием bc. Биссектрисы внешних углов при вершинах b и c треугольника abc пересекаются в точке o. Докажите что oc=ob
Ответ(ы) на вопрос:
Поскольку в равнобедренном треугольнике АВС углы при основании ВС равны, то /_В = /_С, но это значит, что и внешние углы при вершинах В и С равны между собой: /_АВВ1 = /_АСС1 И половинки этих внешних углов, полученных при проведении биссектрис ВВ2 и СС2 также равны между собой /_В2ВВ1 = /_С2СС1.
Биссектрисы В2В и С2С пересекаются в точке О.
/_ ОВС = /_В1ВВ1 как вертикальные, и /_ОСС1 = /_С2СС! как вертикальные. Но поскольку /_В2ВВ1 = /_С2СС1, то и /ОВС = /_ОСВ, и треугольник ОВС - равнобедренный с основанием ВС. Следовательно, ОВ = ОС как боковые стороны равнобедренного тр-ка ОВС, что и требовалось доказать.
Не нашли ответ?
Похожие вопросы