Трикутник abc задано координатами вершин A(-2;3), B(4;0), C(4;5). Знайдіть довжину CD трикутника ABC, якщо відомо, що ординатна D удвічі бменша від її абциси

Трикутник abc задано координатами вершин A(-2;3), B(4;0), C(4;5). Знайдіть довжину CD трикутника ABC, якщо відомо, що ординатна D удвічі бменша від її абциси
Гость
Ответ(ы) на вопрос:
Гость
Для начала надо найти координаты точки D(2n;n), которые по условию равны: х=2n и y=n. Эта точка принадлежит прямой АВ, уравнение которой: (x+2)/(4+2)=(y-3)/(0-3) или -3x-6=6y-18 или 2y=4-x или y=2-x/2. Нам дано условие, что для точки D координата x=2y. Подставим это условие в уравнение прямой АВ: y=2-2y/2 или y=1, тогда х=2. Итак, мы имеем точку D(2;1). Найдем длину (модуль) отрезка СD: |CD|=√[(Xc-Xd)²+(Yc-Yd)²] или |CD|=√[(4-2)²+(5-1)²]=2√5. Ответ: СD=2√5.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы