ЦЕНТР ОПИСАННОЙ ОКОЛО ТРЕУГОЛЬНИКА ОКРУЖНОСТИ ЛЕЖИТ НА МЕДИАНЕ .ДОКАЖИТЕ ЧТО ЭТОТ ТРЕУГОЛЬНИК ЛИБО РАВНОБЕДРЕННЫЙ ЛИБО ПРЯМОУГОЛЬНЫЙ
ЦЕНТР ОПИСАННОЙ ОКОЛО ТРЕУГОЛЬНИКА ОКРУЖНОСТИ ЛЕЖИТ НА МЕДИАНЕ .ДОКАЖИТЕ ЧТО ЭТОТ ТРЕУГОЛЬНИК ЛИБО РАВНОБЕДРЕННЫЙ ЛИБО ПРЯМОУГОЛЬНЫЙ
Ответ(ы) на вопрос:
Центр описанной окружности лежит на пересечении серединных перпендикуляров.
Для равнобедренного треугольника серединная высота, проведенная от основания=медиане=биссектрисе.
в прямоугольном треугольнике медиана проведенная из вершины прямого угла к гипотенузе = 1/2 гипотенузы, а гипотенуза = диаметру описанной окружности, т.к. угол опирающийся на гипотенузу =90 и есть вписанным углом, те.угол диаметра= 2*90=180 - прямая линия, это 1/2 окружности. а медиана = радиусу
Не нашли ответ?
Похожие вопросы