Ученик утверждает, что знает решение уравнения xy^6+x^2y=1999 в натуральных числах. Докажите, что он ошибся.
Ученик утверждает, что знает решение уравнения xy^6+x^2y=1999 в натуральных числах. Докажите, что он ошибся.
Ответ(ы) на вопрос:
Гость
Вынесем ху за скобки:
ху(у^5 + х) = 1999
Значит 1999 должно являться произведением двух чисел. Но 1999 простое число, значит возможно только разложение 1999 = 1*1999, которое, как легко убедиться, не подходит.
Не нашли ответ?
Похожие вопросы