Упростить выражение (1/x - 1/x+y) * x^2-y^2 / y и найти его значение при x=0,2 , y= -1,4
Упростить выражение (1/x - 1/x+y) * x^2-y^2 / y
и найти его значение при x=0,2 , y= -1,4
Ответ(ы) на вопрос:
Гость
(1/x - 1/x+y) * x^2-y^2 / y = x^2 - y^2 / x - x^2 - y^2 / x + y / y = x^2 - y^2 / x - (x-y)(x+y)/x + y / y = x^2 - y^2 / x - (x-y) / y = x^2 - y^2 / x - x + y / y = x^2 - y^2 - x^2 + yx/x / y = -y^2 + yx/x / y = y (x - y) /x / y = x-y / x
x=0,2 , y= -1,4
0.2 - (-1.4) / 0.2 = 1.6 / 0.2 = 8
Не нашли ответ?
Похожие вопросы