Уравнения, где нужно сделать замену. Сложновато, но стоит того. [latex]1) \sqrt{x \sqrt[5]{x} } - 26 \sqrt[5]{x \sqrt{x} } = 27[/latex] [latex]2) 3 x^{2} + 15x + 2 \sqrt{ x^{2} + 5x + 1} = 2 [/latex]
Уравнения, где нужно сделать замену. Сложновато, но стоит того.
[latex]1) \sqrt{x \sqrt[5]{x} } - 26 \sqrt[5]{x \sqrt{x} } = 27[/latex]
[latex]2) 3 x^{2} + 15x + 2 \sqrt{ x^{2} + 5x + 1} = 2 [/latex]
Ответ(ы) на вопрос:
Гость
1) Вместо корней запишем заданное уравнение в степенях.
x^(6/10)-26x^(3/10) = 27.
Введём замену: x^(3/10) = n.
Получаем квадратное уравнение:
n²-26n-27 = 0.
Квадратное уравнение, решаем относительно n: Ищем дискриминант:
D=(-26)^2-4*1*(-27)=676-4*(-27)=676-(-4*27)=676-(-108)=676+108=784;Дискриминант больше 0, уравнение имеет 2 корня:
n_1=(√784-(-26))/(2*1)=(28-(-26))/2=(28+26)/2=54/2=27;n_2=(-√784-(-26))/(2*1)=(-28-(-26))/2=(-28+26)/2=-2/2=-1. Этот корнь отбрасываем - корень чётной степени не может быть отрицательным.
Обратная замена: x^(3/10) = 27 = 3³.
Отсюда х = 3^(10) = 59049.
2) Вынесем общий множитель:
3х(х+5)+2√(х(х+5)+1) = 2.
Получаем 2 корня: х = 0 и х = -5.
При этих значениях переменной остаётся тождество 2 = 2.
Не нашли ответ?
Похожие вопросы