В бассейн проведены 3 трубы. Первая наполняет его на 4 часа дольше, чем вторая, а вторая - за 1/3 времени, необходимого для наполнения бассейна третьей труюой. Если все трубы будут действовать одновременно, то бассейн наполнитс...
В бассейн проведены 3 трубы. Первая наполняет его на 4 часа дольше, чем вторая, а вторая - за 1/3 времени, необходимого для наполнения бассейна третьей труюой. Если все трубы будут действовать одновременно, то бассейн наполнится за 4 часа. За сколько часов первая и третья трубы, действуя раздельно, могут наполнить бассейн.
Ответ(ы) на вопрос:
Вторая заполнит за x часов, первая за x+4, третья за 3x часов. Производительность первой 1/(x+4), второй 1/x, третьей 1/(3x). Ратоя 4 часа вместе заполнят бассейн, то есть: [latex]\left(\frac1{x+4}+\frac1x+\frac1{3x}\right)\cdot4=1\\ \frac4{x+4}+\frac4x+\frac4{3x}\right=1\\\frac{12x+12x+48+4x+16}{3x(x+4)}=1\\28x+64=3x^2+12x\\3x^2-16x-64=0\\D=256+768=1024=32^2\\x_1=8,\quad x_2=-\frac83[/latex] Время не может быть отрицательным, поэтому второй корень не подходит. Тогда вторая труба заполнит бассейн за 8 часов, первая за 8+4=12 часов, третья за 3*8=24 часа.
Не нашли ответ?
Похожие вопросы