В каждой из 3 урн по 6 черных и 4 белых шара. Из первой урны наудачу извлечен один шар и переложен во вторую, после чего из второй урны наудачу извлечен один шар и переложен в третью урну. Найдите вероятность того, что шар, изв...

В каждой из 3 урн по 6 черных и 4 белых шара. Из первой урны наудачу извлечен один шар и переложен во вторую, после чего из второй урны наудачу извлечен один шар и переложен в третью урну. Найдите вероятность того, что шар, извлеченный затем из третьей урны, окажется белым.
Гость
Ответ(ы) на вопрос:
Гость
Из первой урны с вероятностью 4/10 вытаскивают белый шар, а с вероятностью 6/10  - черный. Если достали белый, то из второй с вероятностью 5/11 - достается белый и с вероятностью 6/11 - черный, иначе - наоборот. Аналогичная ситуация с третьей урной.  Имеем следующие варианты: белый - белый - белый белый - черный - белый черный - белый - белый черный - черный - белый Вероятность вытащить белый шар будет равна сумме вероятностей этих вариантов. Найдем каждый из них. В том же порядке получаем: (4/10) * (5/11) * (5/11) (4/10) * (6/11) * (4/11) (6/10) * (4/11) * (5/11) (6/10) * (7/11) * (4/11)   Суммируя все эти вероятности и упрощая, получаем 484/1210 = 0.4 или 40 процентов, т.е. тот же результат, как если бы шар извлекался сразу из третьей корзины. Значит, результат можно получить почти ничего не вычисляя, а просто подумав, но с объяснением этого, я, увы не готов помочь.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы