В конус объемом 36 вписан шар. найдите объем шара если осевое сечение конуса является равносторонним треугольником.
В конус объемом 36 вписан шар. найдите объем шара если осевое сечение конуса является равносторонним треугольником.
Ответ(ы) на вопрос:
Гость
Это означает, что радиус шара равен радиусу вписанной в равносторонний треугольник окружности, то есть трети его высоты. r = H/3 при этом радиус основания конуса равен половине стороны R = r*ctg(30) = r*корень(3); Объем конуса равен Vc = (1/3)*pi*R^2*H = (1/3)*pi*r^3*9 = (9/4)*Vs Vs = 4*Vc/9 = 16.
Не нашли ответ?
Похожие вопросы