В кусок льда массой 100 г и температурой – 10 0С влили 1,5 кг расплавленного свинца при темпера-туре плавления. Сколько воды обратится в пар, если свинец остыл до температуры 27 0С?
В кусок льда массой 100 г и температурой – 10 0С влили 1,5 кг расплавленного свинца при темпера-туре плавления. Сколько воды обратится в пар, если свинец остыл до температуры 27 0С?
Ответ(ы) на вопрос:
Гость
Я конечно не уверен, но вот: m₁ = 1.5 кг - масса расплавленного свинца λ₁ = 23 000 Дж на кг - удельная теплота плавления свинца ΔT₁ = 327 - 27 = 300 C снижение температуры свинца С₁ = 130 Дж на кг на град - удельная теплоёмкость свинца Тепло, выделившееся при отвердевании и остывании свинца Q₁ = m₁(λ₁ + С₁ΔT₁) m₂ = 100 г = 0.1 кг - масса льда С₂ = 2100 Дж на кг на град - удельная теплоёмкость льда С₃ = 4200 Дж на кг на град - удельная теплоёмкость воды λ₂ = 330 000 Дж на кг - удельная теплота плавления льда ΔT₂ = 0 - (-10) = 10 С - нагрев льда до температуры плавления ΔT₃ = 27 - 0 = 27 С - нагрев воды до равновесной температуры ΔT₄ = 100 - 0 = 100 С - нагрев воды до точки кипения λ₃ = 2 256 000 Дж на кг - удельная теплота испарения воды x - доля выкипевшей воды Тепло, поглощенное при нагреве и расплаве льда а также при нагреве талой воды частью до равновесной температуры, частью - до температуры кипения плюс тепло, затраченное на выкипание части воды равно: Q₂ = m₂(λ₂ + C₂ΔT₂ + C₃(1-x)ΔT₃ + C₃xΔT₄ + xλ₃) Уравнение баланса получается из условия Q₁ = Q₂ m₁(λ₁ + С₁ΔT₁) = m₂(λ₂ + C₂ΔT₂ + C₃(1-x)ΔT₃ + C₃xΔT₄ + xλ₃) Выделив xm₂ из этого уравнения, получим: xm₂ = (m₁(λ₁ + С₁ΔT₁) - m₂(λ₂ + C₂ΔT₂ + C₃ΔT₃))/(λ₃ + C₃(ΔT₄ - ΔT₃)) xm₂ = (1.5*(23 000 + 130*300) - 0.1*(330 000 + 2100*10 + 4200*27)/(2 256 000 + 4200*(100 - 27)) = (93 000 - 46 440)/2 562 600 = 0.018 кг Из 100 граммов льда при начальной температуре -10 С выкипело 18 граммов воды при отвердевании свинца, налитого при температуре плавления и остывании его (свинца) до 27 градусов.
Не нашли ответ?
Похожие вопросы