В окружность вписан правильный треугольник и около окружности описан правильный треугольник. Докажите, что площадь описанного треугольника в 4 раза больше площади вписанного треугольника.

В окружность вписан правильный треугольник и около окружности описан правильный треугольник. Докажите, что площадь описанного треугольника в 4 раза больше площади вписанного треугольника.
Гость
Ответ(ы) на вопрос:
Гость
Окружность является вписанной для большого треугольника и описанной для маленького. Радиус окружности, описанной около правильного треугольника, равен R = a/√3. Радиус окружности, вписанной в правильный треугольник, равен r = b/2√3. Окружность является одновременно и вписанной и описанной, тогда a/√3 = b/2√3. a = b/2. a/b = 1/2. Т.к. эти треугольник равносторонние, то все углы у них равны. Тогда они еще и подобны по I признаку. Из подобия следует, что их площадь относятся как квадраты их сторон, т.е. S1/S2 = (a/b)² = 1/4. Значит, площадь описанного треугольника в четыре раза больше вписанного.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы