В основании пирамиды лежит равнобедренный треугольник с боковой стороной b и углом при основании β. Все боковые грани образуют с основанием угол φ. Найти площадь полной поверхности пирамиды.

В основании пирамиды лежит равнобедренный треугольник с боковой стороной b и углом при основании β. Все боковые грани образуют с основанием угол φ. Найти площадь полной поверхности пирамиды.
Гость
Ответ(ы) на вопрос:
Гость
При желании можно разбить треугольник ABC на два прямоугольных треугольника AKB и AKC. Но в результате формулы будут все равно тождественны. Действительно, AK = AB sin ß = b sin β BK = AB cos β = b cos β SABK = AK * BK / 2 = b2sin β cos β / 2 откуда SABС =   2SABK =   b2sin β cos β  (примем за искомую площадь основания, далее справочно приведем к той же формуле, которая указана по ссылке выше) Если воспользоваться основными тригонометрическими тождествами, то b2sin β cos β = 1/2 b2sin 2β = 1/2 b2sin 2β   или как по основной формуле (площади равнобедренного треугольника) 1/2 b2sin 2β = 1/2 b2sin (180 - α)  =  1/2 b2sin α Теперь найдем площадь боковой поверхности пирамиды. Сначала найдем высоту боковых граней, прилежащих к равным сторонам равнобедренного треугольника, лежащего в основании пирамиды. При этом учтем, что высота пирамиды проецируется в точку О основания, которая одновременно является центром вписанной окружности. Вместе с радиусом вписанной окружности, высота боковой грани образует прямоугольный треугольник. Откуда высота боковой грани пирамиды равна: h = r / sin φ Длину радиуса вписанной окружности найдем как r = S/p Учитывая, что BC = 2BK, то BC = 2b cos β откуда p = ( b + b + 2b cos β ) / 2 p = ( 2b + 2b cos β ) / 2 p = 2b ( 1 + cos β ) / 2 p = b ( 1 + cos β ) Таким образом, радиус вписанной окружности в основание пирамиды будет равен r = S / p r = b2sin β cos β / b ( 1 + cos β ) = b sin β cos β / ( 1 + cos β ) Теперь определим высоту боковых граней пирамиды. Зная, что l / r = cos φ, то l = r cos φ Тогда площадь грани пирамиды, прилегающей к равным сторонам основания (а в основании пирамиды у нас лежит равнобедренный треугольник) будет равна: S1 = lb / 2 S1 = r cos φ * b / 2 S1 = b sin β cos β / ( 1 + cos β ) cos φ * b / 2 S1 = b2 sin β cos β / ( 1 + cos β ) cos φ / 2 S1 = b2 sin β cos β  cos φ / ( 2 ( 1 + cos β ) ) Площадь боковой грани, прилегающей к основанию, равна: S2 = BC * l / 2 S2 = 2b cos β *  r cos φ / 2 S2 = b cos β * r cos φ S2 = b cos β * b sin β cos β / ( 1 + cos β ) * cos φ S2 = b2 cos2 β sin β cos φ / ( 1 + cos β ) Площадь боковой поверхности пирамиды равна: Sбок = 2S1 + S2 Sбок = 2 * b2 sin β cos β / ( 2 ( 1 + cos β ) cos φ ) + b2 cos2 β sin β cos φ / ( 1 + cos β ) Sбок = b2 sin β cos β cos φ / ( 1 + cos β ) + b2 cos2 β sin β cos φ / ( 1 + cos β ) Sбок = ( b2 sin β cos β cos φ + b2 cos2 β sin β cos φ ) / ( 1 + cos β ) Sбок = b2 sin β cos β cos φ ( 1  + cos β ) / ( 1 + cos β ) Sбок = b2 sin β cos β cos φ Откуда площадь полной поверхности пирамиды с равнобедренным треугольником в основании составит: S = Sбок + Sосн S = b2 sin β cos β cos φ + b2 cos2 β sin β cos φ / ( 1 + cos β )
Не нашли ответ?
Ответить на вопрос
Похожие вопросы