В параллелограмме ABCD проведена биссектриса угла B, которая пересекает сторону AD в точке K. Докажите что треугольник ABK равнобедренный.
В параллелограмме ABCD проведена биссектриса угла B, которая пересекает сторону AD в точке K. Докажите что треугольник ABK равнобедренный.
Ответ(ы) на вопрос:
по признаку паралельности прямых внешний угол В треугольника АВК = углу К, а так как ВК- биссектриса, то угол В равен углу К, то есть треугольник АВК равноб.
1. Т.к. ВК - биссектриса, то угол АВК = СВD. 2. Угол СВD = ВКА(как внутренние накрест лежащии при параллельных ВС и АD и секущей ВК ), а значит ВКА = АВК. Два последних угла являются равными углами при основании равнобедренного треугольника, где АВ и АК - боковые стороны, а ВК - основание. Что и требовалось доказать.
Не нашли ответ?
Похожие вопросы