В правильно пирамиде MABCD, MO-высота пирамиды, МК-апофема, МК+МО=4м, найти величину угла между плоскостью боковой грани и плоскостью основания при котором объём пирамиды будет наибольшим СРОЧНООООО!!!!
В правильно пирамиде MABCD, MO-высота пирамиды, МК-апофема, МК+МО=4м, найти величину угла между плоскостью боковой грани и плоскостью основания при котором объём пирамиды будет наибольшим
СРОЧНООООО!!!!
Ответ(ы) на вопрос:
Гость
Объём пирамиды V=(1/3)*S*h Отрезок, соединяющий апофему и высоту является радиусом вписанной в основание правильного многоугольника окружности.
V напрямую зависит от площади этого треугольника.
МК+МО=4 МК=4-МО
КО=√(МК^2-МО^2)
Площадь этого треугольника равна
S=(1/2)*МО*√(МК^2-МО^2)=(МО/2)*√(16-8*МО)
Рассмотрим площадь как функцию. Максимум данной функции ищется обычным способом, взяв производную и приравнять её к нулю.
Производная равна √(16-8*МО)-(8*МО)/√2*(16-8*МО)=0
Решая уравнение получаем МО=4/3
МК=4-(4/3)=8/3
sinМКО=МО/МК=(4/3)/(8/3)=1/2
МКО=30 градусов
Не нашли ответ?
Похожие вопросы