В правильной 12-угольной пирамиде апофема равна 2 корня из 2,все боковые грани котор

В правильной 12-угольной пирамиде апофема равна 2 корня из 2,все боковые грани которой наклонены к плоскости основанию под углом 45.Найдите её объем. ОЧЧЧЧЧЧЧЧЧЧЧЧЧЧень СРочно!
Гость
Ответ(ы) на вопрос:
Гость
На фото изображена часть данной пирамиды: ОР-высота пирамиды, АВ- одна из сторон основания, РК=2√2 -апофема, ∠ОРК угол наклона апофемы к основанию, равен 45°. ∠АОВ=360/12=30°. В основании лежат 12 треугольников, Вычислим площадь одного из них. ΔРОК. ОР=ОК=2 ОК⊥АВ.  ΔАОК: ∠АОК=30/2=15°. tg15°=АК/ОК; АК=0,27·2=0,54; АВ=0,54·2=1,08. SΔАОВ=0,5·ОК·АВ=0,5·2·1,08=1,08. Площадь основания состоит из 12-ти таких треугольников. Площадь основания пирамиды равна S=1,08·12=12,96. Объем пирамиды равен V=12.96·2/3=8,64  Ответ : 8,64 куб. ед.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы