В правильной шестиугольной призме A B C D E F A1 B1 C1 D1 E1 F1 Стороны основания равны 5 А боковые ребра равны 11 Найдите площадь сечения призмы плоскостью проходящей через вершины C, A1 F1

В правильной шестиугольной призме A B C D E F A1 B1 C1 D1 E1 F1 Стороны основания равны 5 А боковые ребра равны 11 Найдите площадь сечения призмы плоскостью проходящей через вершины C, A1 F1
Гость
Ответ(ы) на вопрос:
Гость
В сечении - шестиугольник, две стороны "а" которого F1А1 и ДС являются рёбрами призмы длиной по 5. 4 остальные стороны - следы сечения боковых граней призмы. Они равны √(5²+(11/2)²) = √(25+30,25) = √55,25. Высота шестиугольника равна √(АС²+СС1²) = √((2acos30°)²+11²) = = √((2*5*(√3/2))² + 121) = √(75+121) = √196 = 14. Площадь шестиугольника S равна сумме площадей прямоугольника S1 и двух треугольников, площадь S2 которых можно найти по формуле Герона. S1 = 5*14 = 70. S2 = 2√(p(p-a)(p-b)(p-c), где р - полупериметр, равный (а+в+с)/2 = = (14+2*√55,25)/2 = 7+√55,25 ≈  14,43303. Тогда S2 =  2*17,5 = 35. Ответ: S = 70 + 35 = 105.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы