В правильной треугольной пирамиде SABC с вершиной S, все ребра которой равны 4, точка N - середина ребра АС, точка О - центр основания пирамиды, точка Р делит отрезок SO в соотношении 3:1, считая от вершины пирамиды. Найдите ра...

В правильной треугольной пирамиде SABC с вершиной S, все ребра которой равны 4, точка N - середина ребра АС, точка О - центр основания пирамиды, точка Р делит отрезок SO в соотношении 3:1, считая от вершины пирамиды. Найдите расстояние от точки В до прямой NP.
Гость
Ответ(ы) на вопрос:
Гость
Прямая NP лежит в плоскости BSN, перпендикулярной ребру АС. Высота пирамиды Н = а√2 / √3 (по свойству тетраэдра) равна  4*√2 / √3. Отрезок ОР составляет от неё 1/4 часть (по заданию). ОР = (1/4)*(4√2 / √3) = √2 / √3. Отрезок ON составляет 1/3 высоты (она же и медиана и биссектриса) основания пирамиды (по свойству точки пересечения медиан равностороннего треугольника). Медиана ВN = 4*cos 30 = 4√3 / 2 = 2√3. ON = (1/3)*(2√3) =  2√3 / 3. Длина отрезка PN = √(OP² + ON²) = √((2/3) + (12/9)) = √(18/9) = √2. Расстояние от точки В до прямой PN равно длине перпендикуляра ВК из точки В на эту прямую. Треугольники PON и BKN подобны (по общему острому углу и по прямым углам). Тогда ВК = (ОР / PN)*BN =((√2 / √3) / √2) * 2√3 = 2.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы