В прямоугольном треугольнике высота, опущенная на гипотенузу равна 24, радиус описанного круга 25. Найти периметр треугольника
В прямоугольном треугольнике высота, опущенная на гипотенузу равна 24, радиус описанного круга 25. Найти периметр треугольника
Ответ(ы) на вопрос:
На гипотенузе отмечена точка центра окружности описанной. Гипотенуза равна в 2 раза радиуса
[latex]c=2R=2*25=50[/latex] - гипотенуза
[latex]S= \frac{c*h}{2} = \frac{50*24}{2} =600[/latex] кв. ед.
Упростим периметр
[latex]P=a+b+c \\ P= \sqrt{(a+b)^2} +c \\ P= \sqrt{a^2+b^2+2ab} +c \\ P= \sqrt{c^2+4S} +c \\ P= \sqrt{50^2+4*600}+50=120 [/latex]
Ответ: 120.
Вариант решени.
Пусть дан треугольник АВС.
Угол С=90°
СН - высота=24
R=25
Радиус окружности, описанной вокруг прямоугольного треугольника, равен половине гипотенузы.
АВ=2R=2*25=50
Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой:
СН²=АН*ВН
ВН=АВ-АН
Примем АН равной х, тогда ВН=50-х
24²=х*(50-х)
576=50х-х²
х²-50х+576=0
Дискриминант равен:
D=b² -4ac=-50² -4·576=196
х₁=(50+√196):2=32
х₂=(50-√196):2=18
Оба корня равны частям АВ.
АН=32
ВН=18
Катет прямоугольного треугольника есть среднее пропорциональное между гипотенузой и отрезком гипотенузы, заключенным между катетом и высотой.
Найдем АС:
АС²=АВ*АН
АС²=50*32=1600
АС=√1600=40
ВС²=АВ*ВН
ВС²=50*18=900
ВС=30
Р=30+40+50=120
Не нашли ответ?
Похожие вопросы