В прямоугольный треугольник вписан полукруг так, что его диаметр лежит на гипотенузе, а центр делит ее на отрезки, длины которых равны 15 и 20 см. Найти длину дуги , заключенной между точками касания полукруга с катетами.

В прямоугольный треугольник вписан полукруг так, что его диаметр лежит на гипотенузе, а центр делит ее на отрезки, длины которых равны 15 и 20 см. Найти длину дуги , заключенной между точками касания полукруга с катетами.
Гость
Ответ(ы) на вопрос:
Гость
Задача на самом деле тривиальная. Раз окружность касается катетов, центр её лежит на биссектрисе прямого угла, и отношение катетов равно 15/20 = 3/4, то есть это обыкновенный "египетский" треугольник, подобный треугольнику со сторонами 3,4,5. Поскольку гипотенуза равна 15 + 20 = 35, катеты равны 21 и 28.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы