В равнобедренном треугольнике АВС с основанием А проведена медиана ВМ Наней взята точка D докажите равенство треугольников 1) АВС и СВD 2) АМ и СDM

В равнобедренном треугольнике АВС с основанием А проведена медиана ВМ Наней взята точка D докажите равенство треугольников 1) АВС и СВD 2) АМ и СDM
Гость
Ответ(ы) на вопрос:
Гость
Т.к. ВМ — медиана равнобедренного треугольника, то она является и высотой и биссектрисой. Таким образом, ∠AMD = ∠DMC = 90°, ∠ABD = ∠DBC, 1) В ΔABD и ΔDBC: АВ = ВС (т.к. ΔАВС равнобедренный), BD — общая. ∠ABD = ∠DBC (т.к. ВМ — биссектриса). Таким образом, ΔABD = ΔDBC по 1-му признаку равенства треугольников. 2) В ΔADM и ΔMDC: АМ = МС (т.к. ВМ — медиана) DM — общая ∠AMD = ∠DMC = 90о Таким образом, ΔADM = ΔMDC по 2-м катетам, что и требовалось доказать.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы