В равнобедренном треугольнике КLM,на основании КМ указана точка Р,От этой точки проведены перпендикулярны к двум боковым сторонам,соответственно РА и РВ, Докажите что LP -биссектриса треугольника КLM если КА=МВ

В равнобедренном треугольнике КLM,на основании КМ указана точка Р,От этой точки проведены перпендикулярны к двум боковым сторонам,соответственно РА и РВ, Докажите что LP -биссектриса треугольника КLM если КА=МВ
Гость
Ответ(ы) на вопрос:
Гость
KL = LM - т.к. ∆KLM - равнобедренным AL = KL - KA LB = LM - BM AK = BM Значит, AL = LB. Рассмотрим ∆KAP и ∆MBP ∠LKM = ∠LMK - как углы при основании равнобедренного треугольника AK = BM ∠KAP = ∠MBP = 90°. Значит, ∆PAK = ∆PBM - по II признаку. Из равенства треугольников => AP = PB AL = LB LP - общая Значит, ∆LAP = ∆LBP - по III признаку. Из равенства треугольников => ∠KLP = ∠MPL. Значит, LP - биссектриса угла KLM.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы