В русском языке 33 буквы: 10 гласных, 21 согласная и две специальные буквы (ъ и ь). Два ученика независимо друг от друга выбрали по одной букве русского алфавита. Какова вероятность,что это две соседние буквы алфавита. Ответ до...

В русском языке 33 буквы: 10 гласных, 21 согласная и две специальные буквы (ъ и ь). Два ученика независимо друг от друга выбрали по одной букве русского алфавита. Какова вероятность,что это две соседние буквы алфавита. Ответ должен быть ≈0,059.
Гость
Ответ(ы) на вопрос:
Гость
Вариантов что буквы соседние 34. Но так как они берут две буквы, вероятность равна 2/34=0,059.
Гость
Общее количество сочетаний по 2 буквы из 33 составляет С(33,2)=33!/(2!*(33-2)!)=528. Чмсло сочетаний соседних букв - 31 пара (аб, бв, вг, гд, де, её, ёж, жз, зи, ик, кл, лм, мн, но, оп, пр, рс, ст, ту, уф, фх, хц, цч, чш, шщ, щь, ьъ, ъы, ыэ, эю, юя). Таким образом искомая вероятность равна отношению благоприятных сочетаний к общему числу сочетаний и составляет  31/528=0,059.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы