В тетраэдре Авсд ребро ад перпендикулярно к плоскости Авс Ав=Ас=10см Вс=12 см АД=8 см Найти линейный угол двугранного угла авсд
В тетраэдре Авсд ребро ад перпендикулярно к плоскости Авс Ав=Ас=10см Вс=12 см АД=8 см Найти линейный угол двугранного угла авсд
Ответ(ы) на вопрос:
Гость
1)CB - ребро двугранного угла.
Чтобы найти линейный угол двугранного угла, необходимо построить плоскость ⊥ ребру BC.
Опустим AE ⊥ BC, DE ⊥ BC по теореме о трех перпендикулярах, где AE - проекция, DE - наклонная. BC - прямая проведенная через основание наклонной и перпендикулярная проекции.
AE и DE - находятся в одной плоскости и пересекаются, ВС - перпендикулярна AE и DE ⇒ перпендикулярна плоскости AED ⇒∠AED - линейный угол двугранного угла ∠ABCD.
2) ΔABC - равнобедренный, т.к. AB = AC = 10 см ⇒ опущенный перпендикуляр AE есть медиана ⇒ EC = DC/2 = 6 см.
3) ΔAEC - прямоугольный
По т. Пифагора
[latex]AE = \sqrt{AC^{2} - EC^{2}} = \sqrt{100-36} = \sqrt{64} = 8[/latex](см)
4) т.к. AD = AE = 8(см) ⇒ ΔADE равнобедренный.
ΔADE - прямоугольный и равнобедренный ⇒ ∠AED = 45°
Ответ: ∠AED = 45°
Не нашли ответ?
Похожие вопросы